LTE - The UMTS Long Term Evolution

November 1, 2017 | Author: Alexander Carpenter | Category: N/A
Share Embed Donate


Short Description

1 LTE - The UMTS Long Term Evolution From Theory to Practice Second Edition Stefania Sesia ST-Ericsson, France Issam Tou...

Description

LTE - The UMTS Long Term Evolution From Theory to Practice Second Edition Stefania Sesia ST-Ericsson, France

Issam Toufik ETSI, France

Matthew Baker Alcatel-Lucent, UK

©WILEY A John Wiley & Sons, Ltd., Publication

Contents Editors' Biographies

xxi

List of Contributors

xxiii

Foreword

xxvii

Preface

xxix

Acknowledgements

xxxi

List of Acronyms

xxxiii

1 Introduction and Background

1

Thomas Salzer and Matthew Baker 1.1

1.2

1.3

The Context for the Long Term Evolution of UMTS

1

1.1.1

Historical Context

1

1.1.2 1.1.3

LTE in the Mobile Radio Landscape The Standardization Process in 3GPP

Requirements and Targets for the Long Term Evolution . . 1.2.1 System Performance Requirements

.

2 5 7 7

1.2.2 Deployment Cost and Interoperability Technologies for the Long Term Evolution 1.3.1 Multicarrier Technology

12 14 14

1.3.2 1.3.3

Multiple Antenna Technology Packet-Switched Radio Interface

15 16

1.3.4 1.3.5

User Equipment Categories From the First LTE Release to LTE-Advanced

17 19

1.4 From Theory to Practice . . References

20 21

CONTENTS

viii

Part I Network Architecture and Protocols

23

2 Network Architecture

25

Sudeep Palat and Philippe Godin Introduction Overall Architectural Overview 2.2.1 The Core Network 2.2.2 The Access Network 2.2.3 Roaming Architecture 2.3 Protocol Architecture 2.3.1 User Plane 2.3.2 Control Plane 2.4 Quality of Service and EPS Bearers 2.4.1 Bearer Establishment Procedure 2.4.2 Inter-Working with other RATs . . 2.5 The E-UTRAN Network Interfaces: SI Interface 2.5.1 Protocol Structure over SI 2.5.2 Initiation over SI 2.5.3 Context Management over SI 2.5.4 Bearer Management over SI 2.5.5 Paging over SI 2.5.6 Mobility over SI 2.5.7 Load Management over SI 2.5.8 Trace Function 2.5.9 Delivery of Warning Messages 2.6 The E-UTRAN Network Interfaces: X2 Interface 2.6.1 Protocol Structure over X2 2.6.2 Initiation over X2 2.6.3 Mobility over X2 2.6.4 Load and Interference Management Over X2 2.6.5 UE Historical Information Over X2 2.7 Summary References 2.1

2.2

3 Control Plane Protocols

25 26 27 30 31 32 32 33 34 37 38 40 41 43 43 44 44 45 47 48 48 49 49 49 51 54 54 55 55

57

Himke van der Velde 3.1 3.2

3.3

Introduction Radio Resource Control (RRC) 3.2.1 Introduction 3.2.2 System Information 3.2.3 Connection Control within LTE 3.2.4 Connected Mode Inter-RAT Mobility 3.2.5 Measurements 3.2.6 Other RRC Signalling Aspects PLMN and Cell Selection

57 58 58 59 63 73 75 78 78

CONTENTS 3.3.1 Introduction 3.3.2 PLMN Selection 3.3.3 Cell Selection 3.3.4 Cell Reselection 3.4 Paging 3.5 Summary References

4 User Plane Protocols

ix

78 79 79 80 84 86 86

87

Patrick Fischer, SeungJune Yi, SungDuck Chun and YoungDae Lee 4.1 4.2

Introduction to the User Plane Protocol Stack Packet Data Convergence Protocol (PDCP) 4.2.1 Functions and Architecture 4.2.2 Header Compression 4.2.3 Security 4.2.4 Handover 4.2.5 Discard of Data Packets 4.2.6 PDCP PDU Formats 4.3 Radio Link Control (RLC) 4.3.1 RLC Entities 4.3.2 RLC PDU Formats 4.4 Medium Access Control (MAC) 4.4.1 MAC Architecture 4.4.2 MAC Functions 4.5 Summary of the User Plane Protocols References

Part II Physical Layer for Downlink 5 Orthogonal Frequency Division Multiple Access (OFDMA)

87 89 89 90 92 93 95 97 98 99 105 108 108 Ill 120 120

121 123

Andrea Ancora, Issam Toufik, Andreas Bury and Dirk Slock 5.1

Introduction 123 5.1.1 History of OFDM Development 124 5.2 OFDM 125 5.2.1 Orthogonal Multiplexing Principle 125 5.2.2 Peak-to-Average Power Ratio and Sensitivity to Non-Linearity .... 131 5.2.3 Sensitivity to Carrier Frequency Offset and Time-Varying Channels . 133 5.2.4 Timing Offset and Cyclic Prefix Dimensioning 135 5.3 OFDMA 137 5.4 Parameter Dimensioning 139 5.4.1 Physical Layer Parameters for LTE 140 5.5 Summary 142 References 142

CONTENTS

X

6 Introduction to Downlink Physical Layer Design

145

Matthew Baker 6.1 Introduction 6.2 Transmission Resource Structure 6.3 Signal Structure 6.4 Introduction to Downlink Operation References

7 Synchronization and Cell Search

145 145 148 149 150

151

Fabrizio Tomatis and Stefania Sesia 7.1 7.2

Introduction Synchronization Sequences and Cell Search in LTE 7.2.1 Zadoff-Chu Sequences 7.2.2 Primary Synchronization Signal (PSS) Sequences 7.2.3 Secondary Synchronization Signal (SSS) Sequences 7.3 Coherent Versus Non-Coherent Detection References

8 Reference Signals and Channel Estimation

151 151 155 157 158 161 163

165

Andrea Ancora, Stefania Sesia and Alex Gorokhov 8.1 8.2

Introduction 165 Design of Reference Signals in the LTE Downlink 167 8.2.1 Cell-Specific Reference Signals 168 8.2.2 UE-Specific Reference Signals in Release 8 171 8.2.3 UE-Specific Reference Signals in Release 9 171 8.3 RS-Aided Channel Modelling and Estimation 174 8.3.1 Time-Frequency-Domain Correlation: The WSSUS Channel Model .175 8.3.2 Spatial-Domain Correlation: The Kronecker Model 176 8.4 Frequency-Domain Channel Estimation 178 8.4.1 Channel Estimate Interpolation 178 8.4.2 General Approach to Linear Channel Estimation 179 8.4.3 Performance Comparison 180 8.5 Time-Domain Channel Estimation 181 8.5.1 Finite and Infinite Length MMSE 182 8.5.2 Normalized Least-Mean-Square 184 8.6 Spatial-Domain Channel Estimation 184 8.7 Advanced Techniques 185 References 186

9 Downlink Physical Data and Control Channels

189

Matthew Baker and Tim Moulsley 9.1 9.2

Introduction Downlink Data-Transporting Channels 9.2.1 Physical Broadcast Channel (PBCH) 9.2.2 Physical Downlink Shared CHannel (PDSCH)

189 189 189 192

CONTENTS 9.2.3 Physical Multicast Channel (PMCH) Downlink Control Channels 9.3.1 Requirements for Control Channel Design 9.3.2 Control Channel Structure 9.3.3 Physical Control Format Indicator CHannel (PCFICH) 9.3.4 Physical Hybrid ARQ Indicator Channel (PHICH) 9.3.5 Physical Downlink Control CHannel (PDCCH) 9.3.6 PDCCH Scheduling Process References

9.3

10 Link Adaptation and Channel Coding

xi

196 196 196 198 198 200 202 212 214

215

Brian Classon, Ajit Nimbalker, Stefania Sesia and Issam Toufik • 10.1 Introduction 10.2 Link Adaptation and CQI Feedback 10.2.1 CQI Feedback in LTE 10.3 Channel Coding 10.3.1 Theoretical Aspects of Channel Coding 10.3.2 Channel Coding for Data Channels in LTE 10.3.3 Channel Coding for Control Channels in LTE 10.4 Conclusions References

11 Multiple Antenna Techniques

215 217 218 223 223 232 244 245 246

249

Thomas Salzer, David Gesbert, Cornelius van Rensburg, Filippo Tosato, Florian Kaltenberger and Tetsushi Abe 11.1 Fundamentals of Multiple Antenna Theory 11.1.1 Overview 11.1.2 MIMO Signal Model 11.1.3 Single-User MIMO Techniques 11.1.4 Multi-User MIMO Techniques 11.2 MIMO Schemes in LTE 11.2.1 Practical Considerations 11.2.2 Single-User Schemes 11.2.3 Multi-User MIMO 11.2.4 MIMO Performance 11.3 Summary References

12 Multi-User Scheduling and Interference Coordination

249 249 252 253 258 262 263 264 274 276 276 277

279

Issam Toufik and Raymond Knopp 12.1 Introduction 12.2 General Considerations for Resource Allocation Strategies 12.3 Scheduling Algorithms 12.3.1 Ergodic Capacity 12.3.2 Delay-Limited Capacity

279 280 283 283 285

CONTENTS

xii

12.4 Considerations for Resource Scheduling in LTE 12.5 Interference Coordination and Frequency Reuse 12.5.1 Inter-eNodeB Signalling to Support Downlink Frequency-Domain ICIC in LTE 12.5.2 Inter-eNodeB Signalling to Support Uplink Frequency-Domain ICIC in LTE 12.5.3 Static versus Semi-Static ICIC 12.6 Summary References

13 Broadcast Operation

286 287 290 290 291 291 292

293

Himke van der Velde, Olivier Hus and Matthew Baker 13.1 Introduction 13.2 Broadcast Modes 13.3 Overall MBMS Architecture 13.3.1 Reference Architecture 13.3.2 Content Provision 13.3.3 Core Network 13.3.4 Radio Access Network - E-UTRAN/UTRAN/GERAN and UE 13.3.5 MBMS Interfaces 13.4 MBMS Single Frequency Network Transmission 13.4.1 Physical Layer Aspects 13.4.2 MBSFN Areas 13.5 MBMS Characteristics 13.5.1 Mobility Support 13.5.2 UE Capabilities and Service Prioritization 13.6 Radio Access Protocol Architecture and Signalling 13.6.1 Protocol Architecture 13.6.2 Session Start Signalling 13.6.3 Radio Resource Control (RRC) Signalling Aspects 13.6.4 Content Synchronization 13.6.5 Counting Procedure 13.7 Public Warning Systems 13.8 Comparison of Mobile Broadcast Modes 13.8.1 Delivery by Cellular Networks 13.8.2 Delivery by Broadcast Networks 13.8.3 Services and Applications References

Part III Physical Layer for Uplink 14 Uplink Physical Layer Design

293 293 295 295 . 295 296 . . .296 297 297 297 301 303 303 303 304 304 305 306 308 310 312 312 312 313 313 314

315 317

Robert Love and Vijay Nangia 14.1 Introduction 14.2 SC-FDMA Principles

317 318

CONTENTS 14.2.1 SC-FDMA Transmission Structure 14.2.2 Time-Domain Signal Generation 14.2.3 Frequency-Domain Signal Generation (DFT-S-OFDM) 14.3 SC-FDMA Design in LTE 14.3.1 Transmit Processing for LTE 14.3.2 SC-FDMA Parameters for LTE 14.3.3 d.c. Subcarrier in SC-FDMA 14.3.4 Pulse Shaping 14.4 Summary References

15 Uplink Reference Signals

xiii

318 318 320 321 321 322 324 324 325 326

327

Robert Love and Vijay Nangia 15.1 Introduction 15.2 RS Signal Sequence Generation 15.2.1 Base RS Sequences and Sequence Grouping 15.2.2 Orthogonal RS via Cyclic Time-Shifts of a Base Sequence 15.3 Sequence-Group Hopping and Planning 15.3.1 Sequence-Group Hopping 15.3.2 Sequence-Group Planning 15.4 Cyclic Shift Hopping 15.5 Demodulation Reference Signals (DM-RS) 15.6 Uplink Sounding Reference Signals (SRS) 15.6.1 SRS Subframe Configuration and Position 15.6.2 Duration and Periodicity of SRS Transmissions 15.6.3 SRS Symbol Structure 15.7 Summary References

16 Uplink Physical Channel Structure

327 328 330 330 332 332 333 333 335 337 337 337 338 340 341

343

Robert Love and Vijay Nangia 16.1 Introduction 343 16.2 Physical Uplink Shared Data Channel Structure 344 16.2.1 Scheduling on PUSCH 345 16.2.2 PUSCH Transport Block Sizes 347 16.3 Uplink Control Channel Design 348 16.3.1 Physical Uplink Control Channel (PUCCH) Structure 348 16.3.2 Types of Control Signalling Information and PUCCH Formats .... 352 16.3.3 Channel State Information Transmission on PUCCH (Format 2) . . .353 16.3.4 Multiplexing of CSI and HARQ ACK/NACK from a UE on PUCCH 355 16.3.5 HARQ ACK/NACK Transmission on PUCCH (Format la/lb) .... 356 16.3.6 Multiplexing of CSI and HARQ ACK/NACK in the Same (Mixed) PUCCH RB 363 16.3.7 Scheduling Request (SR) Transmission on PUCCH (Format 1) . . . . 363 16.4 Multiplexing of Control Signalling and UL-SCH Data on PUSCH 365 16.5 ACK/NACK Repetition 367

CONTENTS

xiv

16.6 Multiple-Antenna Techniques 16.6.1 Closed-Loop Switched Antenna Diversity 16.6.2 Multi-User 'Virtual' MIMO or SDMA 16.7 Summary References

17 Random Access

367 367 368 369 369

371

Pierre Bertrand and Jing Jiang 17.1 Introduction 17.2 Random Access Usage and Requirements in LTE 17.3 Random Access Procedure 17.3.1 Contention-Based Random Access Procedure 17.3.2 Contention-Free Random Access Procedure 17.4 Physical Random Access Channel Design 17.4.1 Multiplexing of PRACH with PUSCH and PUCCH 17.4.2 The PRACH Structure 17.4.3 Preamble Sequence Theory and Design 17.5 PRACH Implementation 17.5.1 UE Transmitter 17.5.2 eNodeB PRACH Receiver 17.6 Time Division Duplex (TDD) PRACH 17.6.1 Preamble Format 4 17.7 Concluding Remarks References

18 Uplink Transmission Procedures

371 371 372 373 376 376 376 377 385 396 397 398 404 404 405 406

407

Matthew Baker 18.1 Introduction 18.2 Uplink Timing Control 18.2.1 Overview 18.2.2 Timing Advance Procedure 18.3 Power Control 18.3.1 Overview 18.3.2 Detailed Power Control Behaviour 18.3.3 UE Power Headroom Reporting 18.3.4 Summary of Uplink Power Control Strategies References

Part IV Practical Deployment Aspects 19 User Equipment Positioning

407 407 407 408 411 411 412 419 420 420

421 423

Karri Ranta-aho and Zukang Shen 19.1 Introduction 19.2 Assisted Global Navigation Satellite System (A-GNSS) Positioning 19.3 Observed Time Difference Of Arrival (OTDOA) Positioning

423 425 426

CONTENTS 19.3.1 Positioning Reference Signals (PRS) 19.3.2 OTDOA Performance and Practical Considerations 19.4 Cell-ID-based Positioning 19.4.1 Basic CID Positioning 19.4.2 Enhanced CID Positioning using Round Trip Time and UE Receive Level Measurements 19.4.3 Enhanced CID Positioning using Round Trip Time and Angle of Arrival 19.5 LTE Positioning Protocols 19.6 Summary and Future Techniques References

xv

427 430 431 431 431

20 The Radio Propagation Environment

432 433 435 436

437

Juha Ylitalo and Tommi Jamsa 20.1 Introduction 20.2 SISO and SIMO Channel Models 20.2.1 ITU Channel Model 20.2.2 3GPP Channel Model 20.2.3 Extended ITU Models 20.3 MIMO Channel Models 20.3.1 SCM Channel Model 20.3.2 SCM-Extension Channel Model 20.3.3 WINNER Model 20.3.4 LTE Evaluation Model 20.3.5 Extended ITU Models with Spatial Correlation 20.3.6 ITU Channel Models for IMT-Advanced 20.3.7 Comparison of MIMO Channel Models 20.4 Radio Channel Implementation for Conformance Testing 20.4.1 Performance and Conformance Testing 20.4.2 Future Testing Challenges 20.5 Concluding Remarks References

21 Radio Frequency Aspects

437 438 439 440 440 441 442 444 445 446 448 449 453 454 454 454 455 455

457

Moray Rumney, Takaharu Nakamura, Stefania Sesia, Tony Sayers and Adrian Payne 21.1 Introduction 21.2 Frequency Bands and Arrangements 21.3 Transmitter RF Requirements 21.3.1 Requirements for the Intended Transmissions 21.3.2 Requirements for Unwanted Emissions 21.3.3 Power Amplifier Considerations 21.4 Receiver RF Requirements 21.4.1 Receiver General Requirements 21.4.2 Transmit Signal Leakage 21.4.3 Maximum Input Level 21.4.4 Small Signal Requirements

457 459 462 462 467 471 474 474 475 477 478

CONTENTS

xvi

21.4.5 Selectivity and Blocking Specifications 21.4.6 Spurious Emissions 21.4.7 Intermodulation Requirements 21.4.8 Dynamic Range 21.5 RF Impairments 21.5.1 Transmitter RF Impairments 21.5.2 Model of the Main RF Impairments 21.6 Summary References

22 Radio Resource Management

482 488 489 491 492 492 495 500 501

503

Muhammad Kazmi 22.1 Introduction 22.2 Cell Search Performance 22.2.1 Cell Search within E-UTRAN 22.2.2 E-UTRAN to E-UTRAN Cell Global Identifier Reporting Requirements 22.2.3 E-UTRAN to UTRAN Cell Search 22.2.4 E-UTRAN to GSM Cell Search 22.2.5 Enhanced Inter-RAT Measurement Requirements 22.3 Mobility Measurements 22.3.1 E-UTRAN Measurements 22.3.2 UTRAN Measurements 22.3.3 GSM Measurements: GSM Carrier RSSI 22.3.4 CDMA2000 Measurements 22.4 UE Measurement Reporting Mechanisms and Requirements 22.4.1 E-UTRAN Event Triggered Reporting Requirements 22.4.2 Inter-RAT Event-Triggered Reporting 22.5 Mobility Performance 22.5.1 Mobility Performance in RRC_IDLE State 22.5.2 Mobility Performance in RRC_CONNECTED State 22.6 RRC Connection Mobility Control Performance 22.6.1 RRC Connection Re-establishment 22.6.2 Random Access 22.7 Radio Link Monitoring Performance 22.7.1 In-sync and Out-of-sync Thresholds 22.7.2 Requirements without DRX 22.7.3 Requirements with DRX 22.7.4 Requirements during Transitions 22.8 Concluding Remarks References

23 Paired and Unpaired Spectrum

503 505 505 509 510 511 512 513 513 514 516 516 516 517 517 518 518 522 525 525 525 526 526 527 527 527 528 529

531

Nicholas Anderson 23.1 Introduction 23.2 Duplex Modes

531 532

CONTENTS 23.3 Interference Issues in Unpaired Spectrum 23.3.1 Adjacent Carrier Interference Scenarios 23.3.2 Summary of Interference Scenarios 23.4 Half-Duplex System Design Aspects 23.4.1 Accommodation of Transmit-Receive Switching 23.4.2 Coexistence between Dissimilar Systems 23.4.3 HARQ and Control Signalling for TDD Operation 23.4.4 Half-Duplex FDD (HD-FDD) Physical Layer Operation 23.5 Reciprocity 23.5.1 Conditions for Reciprocity 23.5.2 Applications of Reciprocity 23.5.3 Summary of Reciprocity Considerations References

24 Picocells, Femtocells and Home eNodeBs

xvii

533 535 543 544 544 547 548 551 552 554 558 561 562

563

Philippe Godin and Nick Whinnett 24.1 Introduction 24.2 Home eNodeB Architecture 24.2.1 Architecture Overview 24.2.2 Functionalities 24.2.3 Mobility 24.2.4 Local IP Access Support 24.3 Interference Management for Femtocell Deployment 24.3.1 Interference Scenarios 24.3.2 Network Listen Mode 24.4 RF Requirements for Small Cells 24.4.1 Transmitter Specifications 24.4.2 Receiver Specifications 24.4.3 Demodulation Performance Requirements 24.4.4 Time Synchronization for TDD Operation 24.5 Summary References

25 Self-Optimizing Networks

563 564 564 565 566 568 569 570 574 574 575 576 578 579 580 580

581

Philippe Godin 25.1 Introduction 25.2 Automatic Neighbour Relation Function (ANRF) 25.2.1 Intra-LTE ANRF 25.2.2 Automatic Neighbour Relation Table 25.2.3 Inter-RAT or Inter-Frequency ANRF 25.3 Self-Configuration of eNodeB and MME 25.3.1 Self-Configuration of eNodeB/MME over SI 25.3.2 Self-Configuration of IP address and X2 interface 25.4 Automatic Configuration of Physical Cell Identity 25.5 Mobility Load Balancing Optimization

581 582 582 583 583 584 585 585 587 587

CONTENTS

xviii

25.5.1 Intra-LTE Load Exchange 25.5.2 Intra-LTE Handover Parameter Optimization 25.5.3 Inter-RAT Load Exchange 25.5.4 Enhanced Inter-RAT Load Exchange 25.6 Mobility Robustness Optimization 25.6.1 Too-Late Handover 25.6.2 Coverage Hole Detection 25.6.3 Too-Early Handover 25.6.4 Handover to an Inappropriate Cell 25.6.5 MRO Verdict Improvement 25.6.6 Handover to an Unprepared Cell 25.6.7 Unnecessary Inter-RAT Handovers 25.6.8 Potential Remedies for Identified Mobility Problems 25.7 Random Access CHannel (RACH) Self-Optimization 25.8 Energy Saving 25.9 Emerging New SON Use Cases References

26 LTE System Performance

588 589 590 590 591 591 591 592 592 593 594 594 595 595 596 597 598

599

Tetsushi Abe 26.1 Introduction 26.2 Factors Contributing to LTE System Capacity 26.2.1 Multiple Access Techniques 26.2.2 Frequency Reuse and Interference Management 26.2.3 Multiple Antenna Techniques 26.2.4 Semi-Persistent Scheduling 26.2.5 Short Subframe Duration and Low HARQ Round Trip Time 26.2.6 Advanced Receivers 26.2.7 Layer 1 and Layer 2 Overhead 26.3 LTE Capacity Evaluation 26.3.1 Downlink and Uplink Spectral Efficiency 26.3.2 VoIP Capacity 26.4 LTE Coverage and Link Budget 26.5 Summary References

Part V

LTE-Advanced

27 Introduction to LTE-Advanced

599 599 600 600 601 601 602 602 602 603 605 608 608 610 611

613 615

Dirk Gerstenberger 27.1 27.2 27.3 27.4 27.5

Introduction and Requirements Overview of the Main Features of LTE-Advanced Backward Compatibility Deployment Aspects UE Categories for LTE-Advanced

615 618 619 620 621

CONTENTS References

28 Carrier Aggregation

xix 622

623

Juan Montojo and Jelena Damnjanovic 28.1 Introduction 623 28.2 Protocols for Carrier Aggregation 624 28.2.1 Initial Acquisition, Connection Establishment and CC Management . 624 28.2.2 Measurements and Mobility 625 28.2.3 User Plane Protocols 628 28.3 Physical Layer Aspects 631 28.3.1 Downlink Control Signalling 631 28.3.2 Uplink Control Signalling 636 28.3.3 Sounding Reference Signals 642 28.3.4 Uplink Timing Advance 642 28.3.5 Uplink Power Control 642 28.3.6 Uplink Multiple Access Scheme Enhancements 644 28.4 UE Transmitter and Receiver Aspects 648 28.4.1 UE Transmitter Aspects of Carrier Aggregation 648 28.4.2 UE Receiver Aspects of Carrier Aggregation 648 28.4.3 Prioritized Carrier Aggregation Scenarios 649 28.5 Summary 650 References 650

29 Multiple Antenna Techniques for LTE-Advanced

651

Alex Gorokhov, Amir Farajidana, Kapil Bhattad, Xiliang Luo and Stefan Geirhofer 29.1 Downlink Reference Signals 29.1.1 Downlink Reference Signals for Demodulation 29.1.2 Downlink Reference Signals for Estimation of Channel State Information (CSI-RS) 29.2 Uplink Reference Signals 29.2.1 Uplink DeModulation Reference Signals (DM-RS) 29.2.2 Sounding Reference Signals (SRSs) 29.3 Downlink MEMO Enhancements 29.3.1 Downlink 8-Antenna Transmission 29.3.2 Enhanced Downlink Multi-User MIMO 29.3.3 Enhanced CSI Feedback 29.4 Uplink Multiple Antenna Transmission 29.4.1 Uplink SU-MIMO for PUSCH 29.4.2 Uplink Transmit Diversity for PUCCH 29.5 Coordinated Multipoint (CoMP) Transmission and Reception 29.5.1 Cooperative MIMO Schemes and Scenarios 29.6 Summary References

651 652 654 657 657 658 659 659 661 662 666 666 668 669 669 671 671

CONTENTS

XX

30 Relaying

673

Eric Hardouin, J. Nicholas Laneman, Alexander Golitschek, Hidetoshi Suzuki, Osvaldo Gonsa 30.1 Introduction 30.1.1 What is Relaying? 30.1.2 Characteristics of Relay Nodes 30.1.3 Protocol Functionality of Relay Nodes 30.1.4 Relevant Deployment Scenarios 30.2 Theoretical Analysis of Relaying 30.2.1 Relaying Strategies and Benefits 30.2.2 Duplex Constraints and Resource Allocation 30.3 Relay Nodes in LTE-Advanced 30.3.1 Types of RN 30.3.2 Backhaul and Access Resource Sharing 30.3.3 Relay Architecture 30.3.4 RN Initialization and Configuration 30.3.5 Random Access on the Backhaul Link 30.3.6 Radio Link Failure on the Backhaul Link 30.3.7 RN Security 30.3.8 Backhaul Physical Channels 30.3.9 Backhaul Scheduling 30.3.10 Backhaul HARQ 30.4 Summary References

31 Additional Features of LTE Release 10

673 673 675 676 677 679 679 683 684 684 685 687 689 690 690 690 691 696 698 699 699

701

Teck Hu, Philippe Godin and Sudeep Palat 31.1 Introduction 31.2 Enhanced Inter-Cell Interference Coordination 31.2.1 LTE Interference Management 31.2.2 Almost Blank Subframes 31.2.3 X2 Interface Enhancements for Time-Domain ICIC 31.2.4 UE Measurements in Time-Domain ICIC Scenarios 31.2.5 RRC Signalling for Restricted Measurements 31.2.6 ABS Deployment Considerations 31.3 Minimization of Drive Tests 31.3.1 Logged MDT 31.3.2 Immediate MDT 31.4 Machine-Type Communications References

32 LTE-Advanced Performance and Future Developments

701 701 703 703 705 706 708 709 710 711 712 712 714

715

Takehiro Nakamura and Tetsushi Abe 32.1 LTE-Advanced System Performance 32.2 Future Developments References

Index

715 718 720

721

View more...

Comments

Copyright � 2017 SILO Inc.